3.364 \(\int \frac{\sqrt{\sec (c+d x)}}{\sqrt{1+\cos (c+d x)}} \, dx\)

Optimal. Leaf size=47 \[ \frac{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sin ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)+1}\right )}{d} \]

[Out]

(Sqrt[2]*ArcSin[Sin[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.0787229, antiderivative size = 47, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {4222, 2781, 216} \[ \frac{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sin ^{-1}\left (\frac{\sin (c+d x)}{\cos (c+d x)+1}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sec[c + d*x]]/Sqrt[1 + Cos[c + d*x]],x]

[Out]

(Sqrt[2]*ArcSin[Sin[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/d

Rule 4222

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 2781

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> -Dist[Sqr
t[2]/(Sqrt[a]*f), Subst[Int[1/Sqrt[1 - x^2], x], x, (b*Cos[e + f*x])/(a + b*Sin[e + f*x])], x] /; FreeQ[{a, b,
 d, e, f}, x] && EqQ[a^2 - b^2, 0] && EqQ[d, a/b] && GtQ[a, 0]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{1+\cos (c+d x)}} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{1+\cos (c+d x)}} \, dx\\ &=-\frac{\left (\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2}} \, dx,x,-\frac{\sin (c+d x)}{1+\cos (c+d x)}\right )}{d}\\ &=\frac{\sqrt{2} \sin ^{-1}\left (\frac{\sin (c+d x)}{1+\cos (c+d x)}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{d}\\ \end{align*}

Mathematica [A]  time = 0.107214, size = 68, normalized size = 1.45 \[ \frac{2 \cos \left (\frac{1}{2} (c+d x)\right ) \sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}} \sqrt{\sec (c+d x)} \tan ^{-1}\left (\frac{\sin \left (\frac{1}{2} (c+d x)\right )}{\sqrt{\cos (c+d x)}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Sec[c + d*x]]/Sqrt[1 + Cos[c + d*x]],x]

[Out]

(2*ArcTan[Sin[(c + d*x)/2]/Sqrt[Cos[c + d*x]]]*Cos[(c + d*x)/2]*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[Sec
[c + d*x]])/d

________________________________________________________________________________________

Maple [A]  time = 0.374, size = 82, normalized size = 1.7 \begin{align*}{\frac{ \left ( \cos \left ( dx+c \right ) \right ) ^{2}-1}{d \left ( \sin \left ( dx+c \right ) \right ) ^{2}}\sqrt{ \left ( \cos \left ( dx+c \right ) \right ) ^{-1}}\sqrt{2+2\,\cos \left ( dx+c \right ) }\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(1/2)/(1+cos(d*x+c))^(1/2),x)

[Out]

1/d*(1/cos(d*x+c))^(1/2)*(2+2*cos(d*x+c))^(1/2)*arcsin((-1+cos(d*x+c))/sin(d*x+c))*(cos(d*x+c)/(1+cos(d*x+c)))
^(1/2)/sin(d*x+c)^2*(cos(d*x+c)^2-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(1+cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [A]  time = 1.78513, size = 112, normalized size = 2.38 \begin{align*} -\frac{\sqrt{2} \arctan \left (\frac{\sqrt{2} \sqrt{\cos \left (d x + c\right ) + 1} \sqrt{\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right )}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(1+cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-sqrt(2)*arctan(sqrt(2)*sqrt(cos(d*x + c) + 1)*sqrt(cos(d*x + c))/sin(d*x + c))/d

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\sec{\left (c + d x \right )}}}{\sqrt{\cos{\left (c + d x \right )} + 1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(1/2)/(1+cos(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(sec(c + d*x))/sqrt(cos(c + d*x) + 1), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\sec \left (d x + c\right )}}{\sqrt{\cos \left (d x + c\right ) + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(1+cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(sec(d*x + c))/sqrt(cos(d*x + c) + 1), x)